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Abstract—In this paper, I compare two dimensionality reduc-
tion techniques for processing images before learning a multino-
mial logistic regression model. Principal component analysis is
used as a linear mapping and autoencoders, a neural network
technique, is used as a non-linear mapping. The reconstruction
differences and classification errors are both compared using the
fashion MNIST dataset.
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I. INTRODUCTION

Many techniques exist for reducing the dimensionality of a
dataset. Formalized in 1933 [1], Principal Component Analysis
(PCA) is a multivariate statistical technique for reducing the
number of dimensions in a dataset into a compressed repre-
sentation called its principal components. One characteristic
of PCA is that it creates a linear map and, thus, is limited to
learning linear relationships between variables. For this reason,
a neural network technique known as autoencoders can be used
for encoding and decoding large representations of data with
the flexibility of learning non-linear as well as linear mappings.
This project presents an exploration of PCA and autoencoders
for clustering image data and investigates the predictive power
of each method when combined with a multinomial logistic
regression.

A. Related Work

The connection between PCA and neural network represen-
tations is well known. Erkki Oja demonstrated in 1982 that
a neural network with a linear activation function essentially
learns the principal component representation of the input data
[2]. Oja et al. further developed this work by examining one-
unit learning rules for independent component analysis and the
learning of minor components using neural networks as well
[3] [4].

Furthermore, a German research team recently investigated
initializing deep autoencoders with PCA, specifically for doc-
ument image analysis [5]. They noted that when comparing
an image classification task initialized with autoencoders to
one using PCA, less samples or training data were necessary
for computing the principal components and achieving good
results.

B. Fashion-MNIST Dataset

In order to compare these two dimension reduction tech-
niques, the Fashion-MNIST dataset released by Zolando re-
search in 2017 will be used [6]. This dataset consists of 28 x
28 gray-scale images of 70, 000 fashion products. There are

10 categories of these fashion products, with 7, 000 images
per category. The 10 categories of clothing are T-Shirt/Top,
Trouser, Pullover, Dress, Coat, Sandal, Shirt, Sneaker, Bag
and Ankle Boot. When fitting classification models or learning
compressed representations of the data, we will use the stan-
dard training set of 60, 000 images and labels, and the test
set of 10, 000 images and labels, both of which have been
pre-split for bench-marking purposes.

To represent image data in a tabular format or matrix, we
will create an n x m matrix where each row is an image,
resulting in n rows, and each column is a pixel value of the
image, resulting in m pixels. Given our images are 28 x 28,
each image has 784 pixels where each pixel takes on a value
between 1 and 255, where 1 is a pure white pixel and 255 is
a pure black pixel. The labels for each image are integers in
the range [0, 9], where each number corresponds to a type of
clothing and is summarized in table 1.

TABLE I
IMAGE CLASSES AND LABELS

Type of Clothing Class
t-shirt/top 0

trouser 1
pullover 2

dress 3
coat 4

sandal 5
shirt 6

sneaker 7
bag 8

ankle boot 9

II. MODELLING TECHNIQUES

A. Principal Component Analysis

Using the training dataset without the labels, we effectively
have a 60, 000 x 784 data matrix, denoted as X . The matrix
representation of the data makes the variables not only difficult
to visualize and interpret but also computationally taxing to
deal with when applying predictive models. Therefore, we can
use PCA to learn a transformation matrix, Z, that maps all
the original data into a new coordinate system that projects
the data onto a basis that maximizes explained variance of the
data.

The first step of PCA is to standardize the data matrix,
X . This is important because features or columns in the
matrix that have larger scales relative to other columns will
end up dominating the final principal component matrix, i.e.



attributing most of the explained variance to these features.
This step is typically done by subtracting each column mean
from each column and dividing by their respective standard
deviation. In the case of our gray-scale image data, this is less
crucial given the pixels are all on the same scale. However,
standardization does have other benefits as well such as faster
learning for neural networks which will become important
later when implementing autoencoders, therefore it will be part
of the procedure in this paper. The standardized matrix will
be denoted as Y .

The second step is to calculate the covariance matrix of
the standardized matrix. The covariance between the variables
can be found by performing matrix multiplication between
Y T and Y and normalizing by 1

n−1 , where n is the number
of features. It should be noted that this results in an 784 x
784 symmetric matrix, where each diagonal element is the
variance of each feature and every non-diagonal element is
a particular covariance between two features. Therefore, the
covaraince matrix, S, will have the following structure:

S =


var(x1) cov(x1, x2) . . . cov(x1, x784)

cov(x1, x2) var(x2) . . . cov(x2, x784)

...
...

. . .
...

cov(x1, x784) cov(x2, x784) . . . var(x784)


The third step is to find the eigenvectors of the covariance

matrix using eigenvalue decomposition such that we obtain a
matrix, Z, whose columns are the eigenvectors of S. Here, Λ
is a diagonal matrix whose elements are the eigenvalues of S
in decreasing order. The eigenvector matrix Z has columns,
z1, z2, ..., z784, representing the first principal component, the
second principal components, and so on and so forth until the
last principal component. Each component is orthogonal to
each other and are ordered in decreasing order of explained
variance.

The last step is to use the transformation matrix, Z, to
compute the principal component scores of the scaled data
matrix, Y , by multiplying the two together.

Therefore, PCA can be summarized as follows:
1) Standardize data matrix: Y = HX
2) Calculate covariance matrix: S = 1

n−1Y
TY

3) Eigenvalue Decomposition: S = ZΛZ−1

4) Find PC Scores of original data: T = Y Z

When reducing the dimensionality of our dataset, we denote
the transformation matrix as ZL, where L is the number of
principal components such that L < 784. Therefore, we can
compress the data using TL = Y ZL, where TL still has the
same number of rows but only L columns, thereby resulting
in a reduced dataset.

The transformed matrix, T , can be used to cluster the data
in an unsupervised manner, but in our case, since we have
labels, we will train a logistic regression model and then use
this model to predict the class of an image and assess the
accuracy of the model.

B. Multinomial Logistic Regression

Following dimensionality reduction, logistic regression will
be used on the resulting transformed data, TL, to fit a logistic
regression model. Once the model is fitted, the model will be
used to make predictions with the test data. A multinomial
logistic model will be used because there are ten classes in
the dataset. For a multinomial model, the response variables
has 10 levels in the space G = 0, 1, 2, ..., 9, representing the
set of possible classes.

Suppose the response variables has K levels in the space
G = {0, 1, 2, ...,K}, representing the set of possible classes.
The probability of determining a particular class is defined as
[7],

Pr(G = k|X = x) =
eβ0k+β

T
k x∑K

l=1 e
β0k+βT

k
x

Because multinomial logistic regression outputs a vector of
probabilities given an input, we need to decide which class
the the output probability vector belongs to. We will simply
use the highest probability to assign the output to a predicted
class.

C. Autoencoders

Autoencoders are a type of neural network architecture that
take in an input matrix, compress (encode) the input to a
reduced set of dimensions and then reconstruct (decode) the
compressed data back to its original form. Therefore, a lossy
transformation is applied to the data that may be used in
applications like image compression.

x1

x2

x784

Input
layer

Hidden
layer

x1

x2

x784

Output
layer

...
...

Fig. 1. Basic Autoencoder with 1 hidden layer that is trained to learn an
approximation of the input

As seen in Figure 1, an autoencoder takes in a data matrix,
X , and is passed through a hidden layer that is a lower
dimension than the input layer. The goal is for the network to
reproduce the original data as close as possible to the original.

The input layer will have 784 neurons, corresponding to
the number of features the dataset has. Recall that each
neuron represents a weight and an activation function. For our
purposes, the rectified-linear unit (ReLU) activation function
will be used for the hidden layer and a sigmoid activation
function will be used in the final output layer. The network



will be trained on the entire training dataset, i.e. 60, 000 data
points.

The goal of the autoencoder is to learn a function f(x) ≈ x,
where f(·) is made up of the weights and activation functions
from the network layers. Therefore, a non-linear identity
approximation will be output of this process.

I will not explicitly detail the mathematics of backpropoga-
tion for training an autoencoder, but it may be summarized in
algorithm 1 [8].

for each input x do
Feed-forward pass to compute activations of all

hidden layers and store these in a cache-style
memory. At the same time, compute the final output
x′ in the last layer.

Measure deviation of x′ from input x using loss
function

Backpropogate the error through the network and
update the weights

Repeat until resulting loss is acceptable or other
factor is satisfied

end
Algorithm 1: Autoencoder training algorithm

Furthermore, as detailed by Andrew Ng in his notes [9], the
idea with autoencoders is that there exists some correlations
between pixels, indicating patterns in the images. If the
input was simply random noise then learning a meaningful
representation of the input would be very difficult. Since the
data is essentially images of clothing, there are features that
exist among the different examples, revealing a structure that
can be learned. discover some of those correlations.

Like the PCA model, the autoencoder will be paired with a
classifier in a supervised context to be able to make accurate
predictions. This is done by combining the learned compres-
sion layer from the autoencoder and adding a softmax layer
that will take in the compressed image representation and
produce a relative probability of each class. The architecture
of this can be seen Figure 2.
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Fig. 2. Basic Autoencoder with 1 hidden layer that is trained to learn an
approximation of the input

A softmax layer is exactly the same as a multinomial logistic
regression, and is interchangeable in terms of notation. I will

not demonstrate they are equivalent but it can be seen the
references [10]. Therefore, I will use softmax and logistic
regression interchangeably in this paper since there is no
mathematical difference between the two in this context.

D. Relationship between PCA and Autoencoders

It can be shown that when PCA maximizes the variance to
find the principal components, it is actually minimizing the
following cost function [11]:

J =

N∑
n=1

|x(n)− x̂(n)|2

Where x̂(n) is the reconstructed result using the inverse of
the transformation matrix, i.e. x̂(n) = Z−1Zx(n) [12].

The output, z, of a layer in a neural network is the
multiplication of the weight matrix, W , by the input, x,
with the activation function, f(·) being applied following this
multiplication, i.e. z = f(Wx). In a single hidden layer
autoencoder, after z is outputted by the encoder, it must be
decoded by another layer to reconstruct the original data,
which gives y = g(V z), where y is the final reconstructed
output, g(·), is another activation function and V is the matrix
of the weights of the decoding layer. Therefore, we can
put both these equations together to show an autoencoder is
applying the following to an input:

y = g(V f(Wx))

If the activation functions are chosen to be the identity
functions then the above reduces to y = VWx and the cost
function of the autoencoder is then,

J =

N∑
n=1

|x(n)− VWx(n)|2

This is the same result as the PCA cost function, meaning
PCA is simply a special case of an autoencoder where the
activation functions are chosen linearly.

E. Model Evaluation

The main evaluation metrics that will be used to evaluate
our classifiers is the F1 score, which provides an encompassing
measure that takes into consideration a model’s precision and
recall. It is defined as,

F1 = 2 ∗ precision ∗ recall
precision + recall

(1)

This definition of F1 score is the harmonic mean of pre-
cision and recall. Precision is defined as the ratio of true
positives to the number of true positives and false positives and
recall is defined as the ratio the number of true positives to the
number of true positives plus the number of false negatives.
F1 score is best when F1 = 1 (perfect precision and recall)
and reaches its worst value at F1 = 0 [13].

Calculating the F1 score in the multi-class, yields a score
for every class. Therefore, to compare different classifiers we



will average the ten F1 scores to yield an overall performance
metric. In some cases, a comparison between F1 scores at the
class level will be made to determine where the classifier is
under-performing.

As a benchmark comparison, a logistic regression will be
trained on the dataset without any dimensionality reduction.
The average F1 score and the F1 scores for each class will be
recorded for comparing later models.

III. PCA IMPLEMENTATION

A. Scree plot

Plotting a modified Scree plot in Figure 3 of the first ten
principal components in order of highest explained variance,
it is clear the first three principal components account for
roughly 40% of the total explained variance.

Fig. 3. Scree plot with bars displaying the explained variance as a percentage
of total variance by the first ten PCs

for reducing the dimensionality of a dataset using the
principal components that explain the most variance, one rule
of thumb is to select principal components up to the “elbow”
point in a Scree plot, i.e. where the gain in explained variance
is first greatly reduced. Using the Scree plot in Figure 3, we
can deduce this is the first three principal components, i.e. z1,
z2, and z3.

Therefore, using the reduced PC matrix, Z3, we can com-
pute the PC scores of matrix X and again fit a multinomial
logistic regression and test the results. This yields an average
F1 score of 0.32, which is significantly worse than using all
the principal components. In fact, the model was so primitive
it had and F1 = 0 for sandal, shirt, and sneaker classes.

B. Explained Variance

The previous heuristic for choosing a lower dimensional
representation proved to be an oversimplification of the prob-
lem and loses too much information by dropping 781 principal
components. Another technique to find the minimum number
of principal components without a signification loss in signal is

to use a grid search method for trying out several possibilities
over some range of values.

To examine this deeper, the percentage of explained variance
will be examined. Recall, we can calculate the percentage of
explained variance by the ith principal component by using the
eigenvalue λi as a ratio to the total sum of the 784 eigenvalues.
Therefore, it is:

Percentage of Variance =
λi∑784
i=1 λi

∗ 100%

To determine an appropriate range of values, all 784
principal components were plotted with their percentage of
explained variance. This visualization makes it clear that a
grid search between 130 and 145 principal components is
ideal given the diminishing returns of variance at this point.
Therefore, keeping the original logistic model fixed and trying
the different numbers of principal components to yield the
most accurate classifier yields 141 principal components. This
can be seen in Figure 4.

0 100 200 300 400 500 600 700 800
# of Principal Components

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0
Cu

m
ul

at
ive

 %
 o

f E
xp

lai
ne

d 
Va

ria
nc

e

Components chosen

Fig. 4. Cumulative percentage of explained across all principal components,
where the dotted line indicates the cut-off of 141 principal components, that
was found to be most efficient

Using the first 141 principal components, z1, z2, ..., z141, to
again transform the original data and train it on a multino-
mial logistic classifier, yields an average F1 score of 0.73.
Therefore, with the number of dimensions reduced by a factor
of 5 using PCA, we can still classify the images almost as
accurately as the benchmark logistic regression that had an
average F1 score of 0.75. The F1 score for each individual
class is summarized in table 2 in the last section of this
paper when compared to the autoencoder implementation.
The 141 principal components correspond to a cumulative
percentage of variance of approximately 90%. This means the
remaining 643 principal components only add about 10% more
information.

Lastly, to evaluate this classification model we can setup
a confusion matrix for all the classes. A confusion matrix



displays the predicted label on one axis and the true label
on the opposite axis. The diagonal elements of the matrix are
the number of test examples for which the predicted label is
the same as the true label, while the off-diagonal elements are
test examples that are mislabelled by the classifier [14]. The
better the classifier, the higher the values along the diagonal
elements, indicating correct predictions of a classifier.

Another benefit of the confusion matrix is you can quickly
see what labels are being incorrectly classified as rather than
just know they are incorrect.

The values in the confusion matrix in Figure 5 have been
normalized by the total of each class, therefore rather than see
the number of counts in each element of the matrix, we see the
values are the percentage of correct or incorrect predictions.

Overall the results in Figure 5 are promising given that
trouser, coat, bag, and ankle boot that have an accuracy
of 95%, 97%, 96%, and 98% respectively. However, 45%
pullover predictions were incorrectly classified as a coat. A
similar issue occurred with the shirt class who only had 23%
correct predictions with many being classified as a coat too.
The classifier seems to have trouble distinguishing between
coat, shirt, and pullover, which is not surprising given they
all three pieces of clothing look quite similar.

Fig. 5. Confusion matrix of the ratio of the true labels to the predicted labels
for each class. These results are based on the 141-component PCA model
with logistic regression.

IV. AUTOENCODER IMPLEMENTATION

A. Image Reconstruction

Using a simple autoencoder architecture described in Figure
1, the training set, X , can be encoded (compressed) by training
X to learn itself. The encoding layer is chosen to have
32 neurons all with ReLU activation functions. The size of
this layer was chosen arbitrarily but mainly based on neural
networks trained with the classic MNIST dataset in the Keras
documentation for autoencoders [15]. Note this results in a

Fig. 6. Reconstruction of test images using the trained autoencoder. Images
are (from left to right) ankle boot, pullover, trouser, trouser, and shirt.

dimension reduction of 24 times less than the fully featured
dataset.

Following the training of the autoencoder, we can visualize
how it is reconstructing the image data by encoding and de-
coding images from the test set. A sample of these results can
be seen in Figure 6. This confirms the autoencoder is in fact
reproducing a compressed representation of the information
given to it. The basic shapes of the data are clearly learned
but details like the words on the clothing are not clear.

The decoding layer is then removed from the network and
the softmax layer is added for training with the training set
labels. Once completed, the model performance is evaluated
using the test set.

B. Autoencoder Accuracy

Calculating the average F1 score using the neural network
yields 0.86, which is a 17% improvement from the optimal
PCA model that used 141 principal components.

If we look at each the individual F1 score of each class, we
see there is an improvement in every single one. The biggest
gains are in the pullover category with a 32% increase, coat
with a 33% increase and shirt with a 103% increase in F1

score. All these results are summarized in table 2.
Comparing the confusion matrix in Figure 7 with the

confusion matrix in Figure 5, the neural network’s classifier
improvement in particular classes is noticeable for the pullover
class and the shirt class. Both of these categories have much
less false positives found in other classes, giving a higher
value along the diagonal of the confusion matrix. Furthermore,
while the PCA model struggled with the sandal class with an
accuracy of 59%, the auotencoder has a score of 94% in the
same category.

Lastly, we can break down the F1 scores for every class and
compare them for the benchmark logistic regression model
that did not involve any data compression, the 141 PCA and



TABLE II
RESULTING F1 SCORES BY CATEGORY AND MODEL

Type of Clothing 141 PCA Autoencoder
t-shirt/top 0.78 0.82

trouser 0.95 0.97
pullover 0.59 0.78

dress 0.8 0.85
coat 0.58 0.77

sandal 0.74 0.96
shirt 0.33 0.67

sneaker 0.85 0.95
bag 0.87 0.95

ankle boot 0.83 0.96
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Fig. 7. Confusion matrix of the ratio of the true labels to the predicted labels
for each class. These results are based on the autoencoder and softmax model.

logistic regression model, and the autoencoder with a softmax
layer model. These are summarized in Figure 8. It is clear that
the neural network model has the best F1 score in every image
category. While the PCA model was able to do nearly as well
as the benchmark in every category, it was not a significant
improvement. In fact it only eclipsed the benchmark in the
t-shirt/top and trouser categories. Therefore, if accuracy was
a concern then utilizing the entire dataset with a multinomial
logistic regression would be better. However, if representing
the data in a compressed, minimal format at the expense of
some accuracy, then reducing the dataset using 141 principal
components and a logistic regression would be the better
choice.

The appeal of neural networks is clear from Figure 8.
The autoencoder with softmax layer model is able to reduce
the dataset to 32 key features and still outperform logistic
regression and PCA models. The autoencoder significantly
improved the F1 score in the shirt and coat categories, both
of which had very low scores for the other models.

Fig. 8. Comparison of F1 Scores across each image class and the various
classifiers used. The Autoencoder classifier has the highest score in every
category.

V. DISCUSSION

There are several more ways PCA and autoencoders could
be compared for a deeper understanding of their differences.
Looking at the details of the loss function of each classifier and
how they evolve over time may provide additional information
into the neural network superiority that generalizes better with
so little training.

Given the simplicity of the autoencoder model used here,
it may be worth exploring stacked autoencoders for a better
performance. A stacked autoencoder would be trained one
layer at a time learning to represent each compression sequen-
tially be training on itself. Once each layer is trained, they are
stacked with a classification layer in a supervised manner for
training with the labels, similar to the use of a softmax layer
in this paper. This will probably allow the model to learn
more complex relationships in the images, leading to better
classification results.

As for pure performance, it may be interesting to train the
Fashion-MNIST dataset on more complex neural network ar-
chitecture like convolutional neural networks that are typically
very good at image recognition tasks.

Finally, while a neural network-style encoder and classifier
was better at classifying images in this context, it may not
always be the case that an autoencoder can outperform a PCA
representation of the data. If a linear map can sufficiently
explain the variance in the data without significant loss of
detail, then a neural network may be overkill when a simpler
model like PCA can be used effectively.
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